Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 24(Pt 1): 83-94, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009549

RESUMO

The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals (Helliwell, 1984). Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to the diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. A possible mechanism to account for these observations is proposed.


Assuntos
Cristalografia por Raios X , Proteínas/efeitos da radiação , Síncrotrons , Animais , Galinhas , Feminino , Proteínas/química
2.
AIP Conf Proc ; 16962016.
Artigo em Inglês | MEDLINE | ID: mdl-27293302

RESUMO

Ptychography has emerged as a nondestructive tool to quantitatively study extended samples at a high spatial resolution. In this manuscript, we report on recent developments from our team. We have combined cryo ptychography and fluorescence microscopy to provide simultaneous views of ultrastructure and elemental composition, we have developed multi-GPU parallel computation to speed up ptychographic reconstructions, and we have implemented fly-scan ptychography to allow for faster data acquisition. We conclude with a discussion of future challenges in high-resolution 3D ptychography.

3.
Struct Dyn ; 2(4): 041704, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26798804

RESUMO

For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.

4.
J Synchrotron Radiat ; 21(Pt 1): 66-75, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24365918

RESUMO

Hard X-ray fluorescence microscopy is one of the most sensitive techniques for performing trace elemental analysis of biological samples such as whole cells and tissues. Conventional sample preparation methods usually involve dehydration, which removes cellular water and may consequently cause structural collapse, or invasive processes such as embedding. Radiation-induced artifacts may also become an issue, particularly as the spatial resolution increases beyond the sub-micrometer scale. To allow imaging under hydrated conditions, close to the `natural state', as well as to reduce structural radiation damage, the Bionanoprobe (BNP) has been developed, a hard X-ray fluorescence nanoprobe with cryogenic sample environment and cryo transfer capabilities, dedicated to studying trace elements in frozen-hydrated biological systems. The BNP is installed at an undulator beamline at sector 21 of the Advanced Photon Source. It provides a spatial resolution of 30 nm for two-dimensional fluorescence imaging. In this first demonstration the instrument design and motion control principles are described, the instrument performance is quantified, and the first results obtained with the BNP on frozen-hydrated whole cells are reported.


Assuntos
Técnicas Biossensoriais , Temperatura Baixa , Corantes Fluorescentes , Congelamento , Microscopia de Fluorescência
5.
Opt Express ; 21(23): 28019-28, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514315

RESUMO

Characterization of microscopic structural order and in particular medium range order (MRO) in amorphous materials is challenging. A new technique is demonstrated that allows analysis of MRO using X-rays. Diffraction data were collected from a sample consisting of densely packed polystyrene-latex micro-spheres. Ptychography is used to reconstruct the sample transmission function and fluctuation microscopy applied to characterize structural order producing a detailed `fluctuation map' allowing analysis of the sample at two distinct length scales. Independent verification is provided via X-ray diffractometry. Simulations of dense random packing of spheres have also been used to explore the origin of the structural order measured.

6.
Opt Express ; 20(22): 24678-85, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23187230

RESUMO

We demonstrate Fresnel Coherent Diffractive Imaging (FCDI) tomography in the X-ray regime. The method uses an incident X-ray illumination with known curvature in combination with ptychography to overcome existing problems in diffraction imaging. The resulting tomographic reconstruction represents a 3D map of the specimen's complex refractive index at nano-scale resolution. We use this technique to image a lithographically fabricated glass capillary, in which features down to 70nm are clearly resolved.

7.
Opt Express ; 20(16): 18287-96, 2012 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23038378

RESUMO

Scanning X-ray fluorescence microscopy (XFM) is a particularly useful method for studying the spatial distribution of trace metals in biological samples. Here we demonstrate the utility of combining coherent diffractive imaging (CDI) with XFM for imaging biological samples to simultaneously produce high-resolution and high-contrast transmission images and quantitative elemental maps. The reconstructed transmission function yields morphological details which contextualise the elemental maps. We report enhancement of the spatial resolution in both the transmission and fluorescence images beyond that of the X-ray optics. The freshwater diatom Cyclotella meneghiniana was imaged to demonstrate the benefits of combining these techniques that have complementary contrast mechanisms.

8.
Rev Sci Instrum ; 83(3): 033703, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22462925

RESUMO

A dedicated in-vacuum coherent x-ray diffraction microscope was installed at the 2-ID-B beamline of the Advanced Photon Source for use with 0.7-2.9 keV x-rays. The instrument can accommodate three common implementations of diffractive imaging; plane wave illumination; defocused-probe (Fresnel diffractive imaging) and scanning (ptychography) using either a pinhole, focused or defocused probe. The microscope design includes active feedback to limit motion of the optics with respect to the sample. Upper bounds on the relative optics-to-sample displacement have been measured to be 5.8 nm(v) and 4.4 nm(h) rms/h using capacitance micrometry and 27 nm/h using x-ray point projection imaging. The stability of the measurement platform and in-vacuum operation allows for long exposure times, high signal-to-noise and large dynamic range two-dimensional intensity measurements to be acquired. Finally, we illustrate the microscope's stability with a recent experimental result.

9.
Phys Rev Lett ; 102(4): 043901, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19257417

RESUMO

A massively parallel deterministic method is described for reconstructing shift-invariant complex Green's functions. As a first experimental implementation, we use a single phase contrast x-ray image to reconstruct the complex Green's function associated with Bragg reflection from a thick perfect crystal. The reconstruction is in excellent agreement with a classic prediction of dynamical diffraction theory.

10.
Phys Rev Lett ; 103(24): 243902, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20366201

RESUMO

The measured spatial coherence characteristics of the illumination used in a diffractive imaging experiment are incorporated in an algorithm that reconstructs the complex transmission function of an object from experimental x-ray diffraction data using 1.4 keV x rays. Conventional coherent diffractive imaging, which assumes full spatial coherence, is a limiting case of our approach. Even in cases in which the deviation from full spatial coherence is small, we demonstrate a significant improvement in the quality of wave field reconstructions. Our formulation is applicable to x-ray and electron diffraction imaging techniques provided that the spatial coherence properties of the illumination are known or can be measured.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...